
INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 5, ISSUE 9, SEPTEMBER-2014
ISSN 2229-5518

IJSER © 2014

http://www.ijser.org

Implementation of Open Core Protocol
transaction Verification IP using System Verilog

UVM methodology
Siddaram Patil, Arun Kumar, Dr.v.Venkateswarlu

Abstract - This paper presents Implementation of the Reusable Open Core protocol (OCP) transaction Verification IP (VIP) using

universal verification methodology (UVM) and very easy to implement the functional coverage and SystemVerilog assertions (SVA)

using powerful System Verilog (SV) Language. As verification of the design has become most challenging task, verification is

important factor for achieving time to market (TTM) of the product. This paper address briefly on how the UVM methodology and SV

enables developing VIP easier and quickly over traditional Hardware description language(HDL) verilog or VHDL and Hardware

verification language(HVL) Specman.

Keywords:
OCP, SV, UVM, SVA, VIP, SOC, TTM, HDL, OOPS

—————————— ——————————

I. APPLICATION OF SV AND UVM IN OCP
VIP.

The Current VLSI industry is moving rapid ly in adapting

the feature of SV and UVM in their IP and SOC level

verification because of its strong advantages over the

traditional HDL language like Verilog or VHDL and HVL

language specman.

 As the system Verilog is developed based on

OOP’s (object oriented programming) concepts and

superset of Verilog, the environment can be extended and

add new features without affecting the original existing

code. SV supports constrained randomization, assertion

and functional coverage.

 UVM methodology reduces the time to develop

VIP by using already built in base classes for all the

required components from the UVM library and also helps

re-using the VIP environment at d ifferent level of

abstraction i.e. at module level and chip level.

————————————————

Siddaram Patil, M Tech, Final Semester VLSI Design and

Embedded Systems, VTU Extension Centre, UTL

Technologies Bangalore -22, Karnataka, India.

srpatilsedam@gmail.com

Arun kumar, Professor,VTU Extension Centre,

UTL Technologies Bangalore -22, Karnataka, India,

arunkumar@utltraining.com

Application of SV in OCP VIP is that, the SV interface

construct is used for communicating class based

environment to module based environment and creating

array of physical interface which helps in generating

multiple OCP master/ slave VIP interface without much

effort. SV constructs cover group, cover point and

covergroup.sample is used for achieving functional

coverage. SV construct property and assert is used for

assertion coverage. The interface, functional coverage and

assertion blocks shown separately in fig 1

Application of UVM in OCP VIP is that, the UVM

built in base class for d ifferent components are used from

the UVM library to develop OCP VIP such as, uvm_env

class to build the environment, uvm_test class to develop

the tests, uvm_sequence_item class to build properties of

base tests, uvm_sequence class to develop the d ifferent test

scenario, uvm_driver to generate the transactions to DUT

for OCP_master/ slave driver, uvm_monitor to sample the

activity of OCP bus

.

OCP VIP utilized other features of UVM like

uvm_config_db::set to configure the physical interfaces or

array of physical interface to d ifferent components in the

environment such as OCP master/ slave agents,

master/ slave driver, master/ slave sequence. UVM

IS_ACTIVE feature can be used to make the OCP_VIP

agent as active or passive based on value of IS_ACTIVE bit,

this feature enables the OCP VIP agent to contain driver,

sequencer and monitor if UVM IS_ACTIVE is set otherwise

only monitor is enabled . Different OCP components are

shown in fig 1.

246

IJSER

mailto:santoshipatilit@gmail.com

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 5, ISSUE 9, SEPTEMBER-2014
ISSN 2229-5518

IJSER © 2014

http://www.ijser.org

II. INTRODUCTION

Open core transaction protocol is data/ signal

communication protocol in on chip core interfaces or in

SOC. OCP data communication models range from simple

request grant handshaking through pipelined request –

response to complex out –of order transaction.

OCP describes a point-to- point interface between

two communication module, such as IP cores and bus

interface modules(bus wrappers)[1].in SOC the more

number of IP core behavior, performance and interface

requirements, a standard fixed definition interface protocol

cannot address the all the system interface requirements.

The need to support test requirement and verification adds

a more complexity to the interface. To address the all

system interface requirement, OCP defines a highly flexible

and configurable interface.

As OCP makes IP modules independent of

integration environment and interconnection technology,

helps in reuse of OCP complaint modules in multiple SOC

products.

The OCP VIP is a ready-made, highly configurable

UVM verification environment, su itable for design under

test (DUT) with an OCP interface. The OCP VIP can

generate stimuli in an OCP bus format (single and burst),

execute traffic over a bus as an OCP master to a DUT slave.

Respond , as an OCP slave, to traffic coming from a DUT

master. Ensure that the DUT adheres to OCP protocol ru les,

collect bus traffic and DUT behaviour information,

according to OCP coverage items, all UVC behaviour is in

accordance with the OCP 3.0 Specification .

The paper is organized as follows: section III describes

the OCP VIP architecture. The Basic OCP signal description

table in section IV. Flow Charts for master slave interaction

and basic write read in section V. Implementation of

assertion and functional coverage in VI. Typical application

of OCP VIP in VII. The simulation results are presented in

section VIII. Re-using of OCP VIP to generate multiple OCP

master and slave interfaces in VIII and the conclusion is

arrived at section XI.

III. OCP VIP Architecture in System Verilog
UVM

The above fig 1 shows the OCP VIP architecture using

System Verilog UVM methodology, it contains master and

slave agents are instantiated in the OCP environment. Each

master and slave agent contains its own mon itor,

Sequencer and driver respectively.

OCP Agent can be configured as Passive or active

based on the requirement. The configuration can specify

the agent as passive, which d isables the creation of

sequencer and driver. OCP configuration decides the how

the OCP environment should function.

 Fig 1 OCP verification IP architecture block diagram

The OCP Sequencer supports Generating and driving

bus traffic as an OCP master. The UVC emulates the fu ll

behaviour of an unlimited number of OCP masters capable

of generating all types of OCP transfers. Responding to bus

traffic as an OCP slave. The UVC emulates the fu ll

behaviour of an unlimited number of OCP slaves that

respond to traffic over a bus and generates all types of

responses to a DUT master.

The OCP Driver support all OCP p rotocol data and

address widths, OCP protocol burst transfers like con tinues

READ and continues WRITE and assertions and checks for

protocol violations.

The OCP monitor operates in three d ifferent modes:

Bus Monitor, Master Monitor and Slave Monitor. By

default Bus Monitor is active all the time in OCP

environment. The UVC logs the bus traffic for the purpose

of debugging its elements and DUT devices. Provides

option for data integrity check, coverage collection.

Supports all OCP Single, Burst, Tags and Treads

Operations and all the commands.

OCP Scoreboard takes transaction packets from master

monitor and slave monitor and compares both of them, two

queues of packets are implemented in the scoreboard in

order to receive the packets from both the monitors and

store them temporarily. As soon as both the queues

become non-empty, one packet from each of the queues is

pulled out and compared. If a mismatch occurs, error is

given out.

247

IJSER

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 5, ISSUE 9, SEPTEMBER-2014
ISSN 2229-5518

IJSER © 2014

http://www.ijser.org

IV. BASIC OCP SIGNAL DESCRIPTION [11]

Name Width Driver Function

CLK 1 Varies Clock input

MAddr Configurabl

e

Master Address

MCmd 3 Master Command

MData Configurabl

e

Master Write data

MDataValid 1 Master Write data

valid

MRespAccept 1 Master Master

accepts

response

SCmdAccept 1 Slave Slave accepts

transfer

SDataAccept 1 Slave Slave accepts

write

data

SData Configurabl

e

Slave Read data

SResp 2 Slave Transfer

response

Table 1 Basic OCP signals

V. FLOW CHARTS

A. Master and Slave interaction Flow
This Flow chart explains how the master drives stimulus to

slave, how slave responds for the master commands.

Shows the monitors and scoreboard with test status PASS

or FAIL.

B. OCP Write and Read Flow

VI. ASSERTION and FUNCTIONAL
COVERAGE

A. Assertion [3] [11]

System Verilog Assertion helps in checking the behaviour

of the code and it can be reused across the project without

many difficulties. We can instantiate the assertion code in

the test bench using “bind” command that will bind the

assertion module ports to the DUT ports. Even we can

insert the assertion in the interface. If you know the ports

signals of modules, one can easily write the assertion logic

independently without any dependency. Assertions also

called as control oriented coverage

Example: when the SCmdAccept is low and transfer is not

IDLE the Master should hold the data until the

SCmdAccept is high. (Need to constraint the number of

clock cycles to hold the data)

module assertions (ocp_interface ocp_vif); / / {

property p1;

@ (posedge ocp_vif.Clk)

d isable iff (ocp_vif.MReset_n==1'b0 | | flag == 0)

 (ocp_vif.SCmdAccept==0 && ocp_vif.MCmd!=3'd0)

 | -> ##1 $stable (ocp_vif.MAddr);endproperty

248

IJSER

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 5, ISSUE 9, SEPTEMBER-2014
ISSN 2229-5518

IJSER © 2014

http://www.ijser.org

assert property (p1) else $error("ASSERTION ERR:MAddr

is not stable incase of SCmdAccept is low and transfer is

not IDLE\ n\ n");

endmodule

B. Functional Coverage [2] [11]

Functional Coverage used to measure how effectively The

VIP tested all the feature of design, functional coverage also

called data oriented coverage.

Example:

class ocp_bus_monitor extends svm_monitor

#(ocp_master_basic_sequence_item,ocp_slave_packet);

/-OCPFunctional Coverage groups Declarations

 covergroup ocp_cov ;

 option.per_instance = 1;

 //OCP Cover Points///////////////////////

 transTypes1: coverpoint intf.MBlockHeight {

 ignore_bins Low = {0,1};

 bins High = {2,3};}

 transTypes2: coverpoint intf.MBurstLength {

 bins MBurstLength_2 = {2};

 bins MBurstLength_4 = {4};

 bins MBurstLength_8 = {8};

 bins MBurstLength_16 = {16};

 bins MBurstLength_32 = {32};

 bins MBurstLength_64 = {64};}

 transTypes3:coverpoint intf.MBurstSingleReq;

 transTypes4:coverpoint intf.MCmd;

endclass

VII. TYPICAL APPLICATION OF OCP VIP
 OCP VIP used to perform DUT verification at the block

level or chip level. These features are enabled by

configuration file.

A. Block-Level DUT Verification
The OCP VIP is typically used to verify individual bus

agents, such as bus masters or bus slaves. Figure 2 and

Figure 3 depicts typical applications of the VIP at block

level.

 Figure 2 OCP VIP as Master-Testing a Single DUT Slave

 Figure 3 OCP VIP as Slave- Testing a Single DUT Master

B. Chip-Level DUT Verification
OCP Monitor can be used to monitor a DUT with Master

and Slave. Figure 4 depict typical application of Bus

monitor or Master monitor or Slave monitor

Figure 4 OCP Bus monitors- Monitoring a DUT with

Master and Slave

VIII. SIMULATION RESULTS

A. OCP BASIC TRANSACTION WAVEFORM

I. Read transfer

II. Wrap burst write

249

IJSER

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 5, ISSUE 9, SEPTEMBER-2014
ISSN 2229-5518

IJSER © 2014

http://www.ijser.org

B. FUNCTIONAL COVERAGE REPORT

C. ASSERTION COVERAGE REPORT

IX. REUSE OCP VIP TO GENERATE
MULTIPLE MASTER/SLAVE

Re-used the OCP VIP environment to create multip le

master and multiple slave with the help of System verilog

interface concepts, which is used to creates array of

interface structure and also similarly UVM feature

uvm_config_db::set method is used to assign each

individual array of physical interface from the top level

environment to array of master/ slave agents without any

d ifficulties, the connections happens automatically.

The above implementation can be done in simple way as

shown below steps.

1. Define how many number of master or slave

instance requ ired using define NUM_INTF, the

physical OCP interface will be created NUM_INTF

times in top level module environment

`define NUM_INTF 5

module top();

 reg Clk;

ocp_interface ocp [`NUM_INTF] (Clk);

 endmodule

2. Assigning the sequences to array of master/ slave,

array created is using * i.e. env.m_agnts*/

env.s_agnts*. if we not use array structure, then

individually we need configure NUM_INTF

times(it will not be generic)

for (int k=0; k<`NUM_INTF; k=k+1)

 begin //mstr/slave

uvm_config_db#(uvm_object_wrapper)::set (this,

env.m_agnts*.sequencer.main_phase", default_sequence",

ocp_wrap_write_burst_seq::type_id::get());

uvm_config_db#(uvm_object_wrapper):set(this,

"env.s_agnts*.s_sequencer.main_phase","default_sequence

", simple_response_seq::type_id::get());

end

3. Connect the array of physical interface from top

level to array of OCP master/ slave agents

components without much effort using UVM

feature uvm_config_db::set

for (genvar k=1; k<`NUM_INTF; k=k+1) begin

initial begin

swrite(m_agnt_name,"*.env.m_agnts[%0d]", k);

$swrite(s_agnt_name,"*.env.s_agnts[%0d]", k);

uvm_config_db#(virtual

ocp_interface)::set(null,m_agnt_name,"intf",top.ocp[k]);

uvm_config_db#(virtual

ocp_interface)::set(null,s_agnt_name,"intf",top.ocp[k]);

uvm_config_db#(virtual

ocp_interface)::set(null,{m_agnt_name,".mon1"},"intf",to

p.ocp[k]);

uvm_config_db#(virtual

ocp_interface)::set(null,{s_agnt_name,".s_monitor"},"intf"

,top.ocp[k]);

uvm_config_db#(virtual

ocp_interface)::set(null,{m_agnt_name,".m_basic_s

equence_driver"},"intf",top.ocp[k]);

uvm_config_db#(virtual
ocp_interface)::set(null,{s_agnt_name,".s_driver"},"int
f",top.ocp[k]);end
 end

By changing only one parameter value NUM_INTF=10,

environment has created 10 OCP master/ slave interface

and observed transaction on all the master/ slave interfaces.

250

IJSER

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 5, ISSUE 9, SEPTEMBER-2014
ISSN 2229-5518

IJSER © 2014

http://www.ijser.org

X. CONCLUSION

System Verilog UVM methodology verification IP provides

reusable and configurable VIP at Various levels of

abstractions. Verification IP of OCP allows the customer to

reuse the VIP environment in their soc environment

without much effort when connecting multiple

master/ slave VIP if the DUT contains multiple OCP

master/ slave. Usage of Powerful feature of System Verilog

assertion and functional coverage gives the confidence for

designer to release the products. Reusing of Verification IP

of OCP helps to achieve time to market of the SOC design

REFERENCES

[1] Chih-Wea Wang, Chi-Shao Lai, Chi-Feng Wu, Shih-Arn, and

Ying-His Lin, "On-Chip Interconnection Design and SoC

Integration with OCP", 13 Jun 2008, VLSI Design Automation

and Test (VLSI-DAT)

[2] Shihua Zhang, Asif Iqbal Ahmed and Otmane Ait Mohamed,

"A Reusable verification Framework of Open Core Protocol",

Circuits and Systems and TAISA Conference, 2009, pp. 1-4,

june 28, 2009

[3] Kun Tong and Jinian Bian, "Assertion-based Performance

Analysis for OCP Systems."In Proc. Circuits, Signals, and

Systems (CSS 2007), Banff, Alberta, Canada, July 2007

[4] Natale Barsotti, Riccardo Mariani, Matteo Martinelli, and

Mario Pasquariello, "Dynamic verification of OCP-based SoC",

in Proc. IEEE Int'l Conf. on System-on-Chip, Tampere, Finland ,

Nov. 2005, p. 22

[5] Chih-Wea Wang, Chi-Shao Lai, Chi-Feng Wu, Shih-Arn

Hwang, and Ying-Hsi Lin, , "On-chip Interconnection Design

and SoC Integration with OCP", Proceedings of VLSI-DAT,

2008, pp. 25-28, April 2008

[6] Chin-Yao Chang, Yi-Jiun Chang, Kuen-Jong Lee, Jen-Chieh

Yeh, Shih-Yin Lin and Jui-Liang Ma, "Design of On-Chip Bus

with OCP Interface", 28 Jun 2010, VLSI Design Automation

and Test (VLSI-DAT)

[7] Chien-Chun (Joe) Chou, Konstantinos Aisopos, David Lau,

Yasuhiko Kurosawa and D. N. (Jay) Jayasimha, "Using OCP

and Coherence Extensions to Support System -Level Cache

Coherence", Technical Paper, pg. nos.10, April 2009

[8] Bhakthavatchalu R, Deepthy G.R., Shanooja S,

“Implementation of reconfigurable Open Core Protocol

comp liant memory system using VHDL” Industrial and

Information Systems (ICIIS), 2010 International Conference,

2010, pp.213-218, July 29, 2011

[9] OCP-IP, A SystemC OCP Transaction Level Communication

Channel V2.2, 2006

[10] Open Core Protocol (OCP) Specification,

http:/ / www.ocpip.org/ home.

[11] Open Core Protocol Specification 3.0”, International

Partnership, 2000- 2009 OCP-IP Association, Document

Revision 1.0.

[12] UVM Cook book http:/ / verificationacademy.com/ uvm -

vm/ pdf?pdf=Cookbook%2FDac2011

251

IJSER

http://www.ocpip.org/home
http://verificationacademy.com/uvm-vm/pdf?pdf=Cookbook%2FDac2011
http://verificationacademy.com/uvm-vm/pdf?pdf=Cookbook%2FDac2011

